Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Genes Brain Behav ; 23(1): e12886, 2024 Feb.
Article En | MEDLINE | ID: mdl-38373108

Chronic alcohol exposure results in widespread dysregulation of gene expression that contributes to the pathogenesis of Alcohol Use Disorder (AUD). Long noncoding RNAs are key regulators of the transcriptome that we hypothesize coordinate alcohol-induced transcriptome dysregulation and contribute to AUD. Based on RNA-Sequencing data of human prefrontal cortex, basolateral amygdala and nucleus accumbens of AUD versus non-AUD brain, the human LINC01265 and its predicted murine homolog Gm41261 (i.e., TX2) were selected for functional interrogation. We tested the hypothesis that TX2 contributes to ethanol drinking and behavioral responses to ethanol. CRISPR/Cas9 mutagenesis was used to create a TX2 mutant mouse line in which 306 base-pairs were deleted from the locus. RNA analysis revealed that an abnormal TX2 transcript was produced at an unchanged level in mutant animals. Behaviorally, mutant mice had reduced ethanol, gaboxadol and zolpidem-induced loss of the righting response and reduced tolerance to ethanol in both sexes. In addition, a male-specific reduction in two-bottle choice every-other-day ethanol drinking was observed. Male TX2 mutants exhibited evidence of enhanced GABA release and altered GABAA receptor subunit composition in neurons of the nucleus accumbens shell. In C57BL6/J mice, TX2 within the cortex was cytoplasmic and largely present in Rbfox3+ neurons and IBA1+ microglia, but not in Olig2+ oligodendrocytes or in the majority of GFAP+ astrocytes. These data support the hypothesis that TX2 mutagenesis and dysregulation impacts ethanol drinking behavior and ethanol-induced behavioral responses in mice, likely through alterations in the GABAergic system.


Alcoholism , RNA, Long Noncoding , Humans , Female , Mice , Male , Animals , Ethanol/toxicity , RNA, Long Noncoding/genetics , Alcoholism/genetics , Alcohol Drinking/genetics , Receptors, GABA-A/genetics , Mutation , Mice, Inbred C57BL
2.
bioRxiv ; 2023 Mar 24.
Article En | MEDLINE | ID: mdl-36993453

Free-choice paradigms such as two-bottle choice (2BC) are commonly used to characterize ethanol consumption and preference of rodent models used to study alcohol use disorder (AUD). However, these assays are limited by low temporal resolution that misses finer patterns of drinking behavior, including circadian drinking patterns that are known to vary with age and sex and are affected in AUD pathogenesis. Modern, cost-effective tools are becoming widely available that could elucidate these patterns, including open-source, Arduino-based home-cage sipper devices. We hypothesized that adaptation of these home-cage sipper devices would uncover distinct age- and sex-related differences in temporal drinking patterns. To test this hypothesis, we used the sipper devices in a continuous 2BC paradigm using water and ethanol (10%; v/v) for 14 days to measure drinking patterns of male and female adolescent (3-week), young adult (6-week), and mature adult (18-week) C57BL/6J mice. Daily grams of fluid consumption were manually recorded at the beginning of the dark cycle, while home-cage sipper devices continuously recorded the number of sips. Consistent with prior studies, females consumed more ethanol than males, and adolescent mice consumed the most out of any age group. Correlation analyses of manually recorded fluid consumption versus home-cage sipper activity revealed a statistically significant prediction of fluid consumption across all experimental groups. Sipper activity was able to capture subtle circadian differences between experimental groups, as well as distinct individual variation in drinking behavior among animals. Blood ethanol concentrations were significantly correlated with sipper data, suggesting that home-cage sipper devices can accurately determine individual timing of ethanol consumption. Overall, our studies show that augmenting the 2BC drinking paradigm with automated home-cage sipper devices can accurately measure ethanol consumption across sexes and age groups, revealing individual differences and temporal patterns of ethanol drinking behavior. Future studies utilizing these home-cage sipper devices will further dissect circadian patterns for age and sex relevant to the pathogenesis of AUD, as well as underlying molecular mechanisms for patterns in ethanol consumption. Highlights: Female mice consume more ethanol than males in a continuous access paradigmAdolescent male and female mice consume more ethanol than young or mature adult miceAutomated home-cage sipper devices accurately measure ethanol consumptionDevices reveal sex- and age-dependent differences in circadian drinking patternsDevices reveal distinct individual variation in circadian drinking patterns.

3.
Article En | MEDLINE | ID: mdl-36908580

The molecular mechanisms regulating the development and progression of alcohol use disorder (AUD) are largely unknown. While noncoding RNAs have previously been implicated as playing key roles in AUD, long-noncoding RNA (lncRNA) remains understudied in relation to AUD. In this study, we first identified ethanol-responsive lncRNAs in the mouse hippocampus that are transcriptional network hub genes. Microarray analysis of lncRNA, miRNA, circular RNA, and protein coding gene expression in the hippocampus from chronic intermittent ethanol vapor- or air- (control) exposed mice was used to identify ethanol-responsive competing endogenous RNA (ceRNA) networks. Highly interconnected lncRNAs (genes that had the strongest overall correlation to all other dysregulated genes identified) were ranked. The top four lncRNAs were novel, previously uncharacterized genes named Gm42575, 4930413E15Rik, Gm15767, and Gm33447, hereafter referred to as Pitt1, Pitt2, Pitt3, and Pitt4, respectively. We subsequently tested the hypothesis that CRISPR/Cas9 mutagenesis of the putative promoter and first exon of these lncRNAs in C57BL/6J mice would alter ethanol drinking behavior. The Drinking in the Dark (DID) assay was used to examine binge-like drinking behavior, and the Every-Other-Day Two-Bottle Choice (EOD-2BC) assay was used to examine intermittent ethanol consumption and preference. No significant differences between control and mutant mice were observed in the DID assay. Female-specific reductions in ethanol consumption were observed in the EOD-2BC assay for Pitt1, Pitt3, and Pitt4 mutant mice compared to controls. Male-specific alterations in ethanol preference were observed for Pitt1 and Pitt2. Female-specific increases in ethanol preference were observed for Pitt3 and Pitt4. Total fluid consumption was reduced in Pitt1 and Pitt2 mutants at 15% v/v ethanol and in Pitt3 and Pitt4 at 20% v/v ethanol in females only. We conclude that all lncRNAs targeted altered ethanol drinking behavior, and that lncRNAs Pitt1, Pitt3, and Pitt4 influenced ethanol consumption in a sex-specific manner. Further research is necessary to elucidate the biological mechanisms for these effects. These findings add to the literature implicating noncoding RNAs in AUD and suggest lncRNAs also play an important regulatory role in the disease.

4.
Mol Psychiatry ; 20(11): 1438-47, 2015 Nov.
Article En | MEDLINE | ID: mdl-25450227

Alcohol dependence is a heterogeneous psychiatric disorder characterized by high genetic heritability and neuroadaptations occurring from repeated drug exposure. Through an integrated systems approach we observed consistent differences in transcriptome organization within postmortem human brain tissue associated with the lifetime consumption of alcohol. Molecular networks, determined using high-throughput RNA sequencing, for drinking behavior were dominated by neurophysiological targets and signaling mechanisms of alcohol. The systematic structure of gene sets demonstrates a novel alliance of multiple ion channels, and related processes, underlying lifetime alcohol consumption. Coordinate expression of these transcripts was enriched for genome-wide association signals in alcohol dependence and a meta-analysis of alcohol self-administration in mice. Further dissection of genes within alcohol consumption networks revealed the potential interaction of alternatively spliced transcripts. For example, expression of a human-specific isoform of the voltage-gated sodium channel subunit SCN4B was significantly correlated to lifetime alcohol consumption. Overall, our work demonstrates novel convergent evidence for biological networks related to excessive alcohol consumption, which may prove fundamentally important in the development of pharmacotherapies for alcohol dependence.


Alcoholism/genetics , Alcoholism/pathology , Transcriptome/physiology , Voltage-Gated Sodium Channel beta-4 Subunit/genetics , Alcohol Drinking/genetics , Animals , Brain/pathology , Chronic Disease , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Mice , Postmortem Changes
5.
Genes Brain Behav ; 11(4): 387-97, 2012 Jun.
Article En | MEDLINE | ID: mdl-22239914

Identifying genes that influence behavioral responses to alcohol is critical for understanding the molecular basis of alcoholism and ultimately developing therapeutic interventions for the disease. Using an integrated approach that combined the power of the Drosophila, Caenorhabditis elegans and mouse model systems with bioinformatics analyses, we established a novel, conserved role for chloride intracellular channels (CLICs) in alcohol-related behavior. CLIC proteins might have several biochemical functions including intracellular chloride channel activity, modulation of transforming growth factor (TGF)-ß signaling, and regulation of ryanodine receptors and A-kinase anchoring proteins. We initially identified vertebrate Clic4 as a candidate ethanol-responsive gene via bioinformatic analysis of data from published microarray studies of mouse and human ethanol-related genes. We confirmed that Clic4 expression was increased by ethanol treatment in mouse prefrontal cortex and also uncovered a correlation between basal expression of Clic4 in prefrontal cortex and the locomotor activating and sedating properties of ethanol across the BXD mouse genetic reference panel. Furthermore, we found that disruption of the sole Clic Drosophila orthologue significantly blunted sensitivity to alcohol in flies, that mutations in two C. elegans Clic orthologues, exc-4 and exl-1, altered behavioral responses to acute ethanol in worms and that viral-mediated overexpression of Clic4 in mouse brain decreased the sedating properties of ethanol. Together, our studies demonstrate key roles for Clic genes in behavioral responses to acute alcohol in Drosophila, C. elegans and mice.


Behavior, Animal/drug effects , Chloride Channels/genetics , Ethanol/pharmacology , Animals , Behavior, Animal/physiology , Caenorhabditis elegans , Chloride Channels/metabolism , Drosophila , Mice
...